
Practical, Real-time Centralized Control for
CDN-based Live Video Delivery

Matthew K. Mukerjee?

mukerjee@cs.cmu.edu
David Naylor?

dnaylor@cs.cmu.edu
Junchen Jiang?

junchenj@cs.cmu.edu
Dongsu Han†

dongsuh@ee.kaist.ac.kr
Srinivasan Seshan?

srini@cs.cmu.edu
Hui Zhang?‡

hzhang@cs.cmu.edu
?Carnegie Mellon University †KAIST ‡Conviva Inc.

Abstract
Live video delivery is expected to reach a peak of 50
Tbps this year [7]. This surging popularity is funda-
mentally changing the Internet video delivery landscape.
CDNs must meet users’ demands for fast join times,
high bitrates, and low buffering ratios, while minimizing
their own cost of delivery and responding to issues in
real-time. Wide-area latency, loss, and failures, as well
as varied workloads (“mega-events” to long-tail), make
meeting these demands challenging.

An analysis of video sessions [32] concluded that a
centralized controller could improve user experience, but
CDN systems have shied away from such designs due to
the difficulty of quickly handling failures [29], a require-
ment of both operators and users. We introduce VDN, a
practical approach to a video delivery network that uses
a centralized algorithm for live video optimization. VDN
provides CDN operators with real-time, fine-grained con-
trol. It does this in spite of challenges resulting from the
wide-area (e.g., state inconsistency, partitions, failures)
by using a hybrid centralized+distributed control plane,
increasing average bitrate by 1.7× and decreasing cost
by 2× in different scenarios.

CCS Concepts
•Networks→Traffic engineering algorithms; Over-
lay and other logical network structures;

Keywords
live video; CDNs; central optimization; hybrid control

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787475

1 Introduction
Demand for live video is increasing by 4–5× every three
years and the live video peak streaming rate is expected
to reach 50 Tbps this year [7]. This demand spans
widely different types of videos (professionally-produced
and user-generated) and workloads (“mega-events” to
long-tail). The 2014 World Cup, a recent live video mega-
event, used traditional CDNs to deliver live streams to-
taling several terabits per second [38], which is estimated
to be 40% of all Internet traffic during that time [37].
At the other extreme, 55 million Twitch users [4] watch
more than 150 billion minutes of live video each month,
generated by over 1 million users, making it the fourth
largest Internet traffic producer in the US [5, 41].

The diversity and volume of live video delivery makes
it a complex challenge for modern content delivery in-
frastructures. However, huge demand isn’t the only
challenge; users, CDNs, and the network environment
impose additional requirements. Users demand high
quality, instant start-up (join) times, and low buffering
ratios [10]. CDNs want to meet client demands while
minimizing their delivery costs and responding to issues
in real-time [35]. Finally, operating over the wide-area
network environment requires designs that handle com-
mon latency variations and communication failures.

The traditional solution to these problems is traffic
engineering. However, even state-of-the-art systems [23,
25] work on traffic aggregates at coarse timescales. Users’
demands for high per-stream quality and CDNs’ de-
mands for fast failure recovery require control over in-
dividual streams at fine timescales. Overlay multicast
systems [12, 14, 26, 30], while focusing on individual
stream optimization, overlook issues that arise with the
many concurrent, independent, high-bandwidth streams
in today’s environment. Internet-scale, video-specific
systems like Conviva’s C3 [19] use client-side analytics
to pick the best CDN for a given client at a given time
but ignore the actual data delivery. Although current
CDNs provide good video quality, a previous analysis of
a large collection of video sessions [32] concluded that

CDN 2

Video
Origin Client

CDN 1 “Eyeball”
ISP

Transit
ISP

Figure 1: Entities involved in live video distri-
bution. Unlike Conviva’s C3 [19], which focuses
on clients, we focus on optimizing CDNs.

a centralized video controller algorithm could greatly
improve end-user experience. Even so, traditional CDNs
have shied away from centralized designs due to the
difficulty of providing good performance while quickly
handling failures in the wide area [29].

Unfortunately, past work on live video delivery does
not meet the practical and real-time requirements of
both CDNs and users. In summary, we need a live video
control plane that: 1) enables proactive control over
cost and quality at fine-grained timescales, 2) scales
to today’s largest CDNs and their workloads, 3) achieves
real-time responsiveness to minimize join time and
respond to failures, and 4) meets these goals despite
wide-area network delays and failures.

In order to address these challenges, we propose a new
system, called video delivery network (VDN), that al-
lows CDN operators to dynamically control both stream
placement and restrict bitrates automatically, at a very
fine timescale in a WAN environment. Traditionally,
clients adapt bitrates independently; VDN gives CDN
operators a say, as they have the best view of current
resources and delivery costs. At its core, VDN uses a
centralized algorithm that performs end-to-end optimiza-
tion of live stream routing. The centralized algorithm is
a piece of the larger VDN framework, which mitigates
WAN challenges with a hybrid approach that balances
the benefits of centralized control with the resilience and
responsiveness of distributed control.

We evaluate VDN using traces of real video sessions
from multiple live content providers as well as a WAN
testbed. We show that, in a variety of scenarios such
as heavy-head (e.g., a sports game) and heavy-tail (e.g.,
user-generated streams), VDN provides a 1.7× improve-
ment in average bitrate and reduces delivery costs by
2× compared to current CDNs. We scale VDN to 10,000
videos and show it can react at a timescale of 200 ms.

In summary, our contributions are:

• A centralized algorithm based on integer program-
ming that coordinates delivery to provide high-quality
live video streaming at scale while giving control
“knobs” to operators to balance cost and quality.

• A responsive live video delivery framework that
minimizes join time and mitigates WAN challenges
using a hybrid centralized+distributed control plane.

Sources(

Reflectors(

Edges(

CDN(

AS/Clients(

Video(Requests(DNS(

Stream(1(
Stream(2(
High(Cost(
Low(Cost(

A(B(

C(D(

Figure 2: CDN live content distribution [35].

2 Motivation
2.1 Setting
CDN background: We focus on optimizing CDNs
for HTTP-based live video delivery. Each entity on the
video delivery path (see Figure 1) can be independently
optimized (e.g., clients in Conviva’s C3 [19]), however
the focus of this work is CDN optimization.
Live video: Live video is particularly challenging due to
lack of caching and buffering within the delivery network.
In HTTP-based live streaming, a video is encoded at
multiple pre-determined bitrates. At each bitrate, each
stream is broken into multiple 2–10 second chunks, which
clients fetch independently via standard HTTP GETs.
Clients typically adapt to network issues by fetching
different bitrates [6].
CDN structure: Figure 2 presents the high-level struc-
ture of a CDN’s video delivery system [29, 35, 40]. Each
node represents a cluster of co-located servers. A CDN’s
internal network consists of three logical pieces: video
sources that import videos into the system, reflectors
that forward content internally, and edge clusters that
directly serve end-users (individual clients or aggregate
ASes). Each link has a delivery cost associated with it.
These link costs are a result of private business deals,
but they tend to be more expensive for source/reflector
links (typically long-haul WAN links) and less expensive
(some entirely free) for edge/AS links [2]. In Figure 2,
the link between A and D is a high cost link.
CDNs and DNS: When clients resolve the name of a
video stream, the CDN’s DNS-based client mapping
service maps them to a nearby edge cluster, based on a
number of factors (e.g., load, latency, etc.) [35]. When a
client’s request for a particular channel arrives at an edge
cluster, the edge cluster forwards it to a reflector (found
via DNS), which in turn forwards it to a source (found
via DNS); the content is returned via the reverse path.
When multiple requests for the same content arrive at
the same node (e.g., C in the figure), only one request
is forwarded upwards. The end result is a distribution
tree for each video from sources to edge clusters.

This has been the design used by Akamai for live
streaming since 2004 [29], externally observed in 2008 [40]
and referenced by Akamai in 2010 [35]. We confirm this
holds today [2].

Problems with modern CDNs: Using DNS to map
requests to the appropriate upstream cluster is very nat-
ural as CDN workloads have shifted from web-oriented
to live streaming. Mapping clients to edge clusters with
DNS makes sense, since most live video content is em-
bedded in websites, which already use DNS. However,
using DNS to map internal clusters to upstream clusters
causes issues: 1) CDNs can’t “push” updates to clusters
and must instead wait for clusters to “pull” from DNS
after a timeout period (the DNS TTL); and 2) To reduce
load on DNS, CDNs group different streams together,
reducing granularity [29, 40]. Furthermore, CDNs today
update DNS mappings using heuristics [2, 29, 35, 40],
impacting performance. We explore these issues in more
detail.
DNS TTLs: DNS relies on DNS clients (i.e., clusters) to
ask for updates when cached DNS results expire (every
∼30 seconds) [40], preventing a central controller from
sending updates as they are ready. This reduces the
efficacy of the controller, thus lowering end-user qual-
ity and responsiveness to failures. Furthermore, CDN
clusters can spot local network failures long before a
TTL-bound DNS update could arrive and thus could re-
act quicker. Lowering the TTL would help approximate
a “push”-based system but at the cost of a large increase
in the number of DNS queries.
Heuristic-based mapping algorithm: A monitoring sys-
tem collects performance and load information and,
based on this knowledge, updates the DNS system every
minute [35]. Generally, CDNs map end-users to edge
clusters based on geography, load, whether or not a
cluster is already subscribed to the video, and perfor-
mance relative to the requester [2, 29, 35, 40]. It is
implied that the mapping of edge clusters to reflectors
is done similarly [35], but the specific algorithm is not
publicly known. A measurement study points out that
geographically close edge clusters all map to the same
reflector for the same groups of videos, providing further
evidence [40]. Additionally, an analysis of video traces
shows that mapping requests based on a global view of
the network [32] could provide major benefits for end-
users, implying that there are opportunities to improve
this mapping.

Goal: VDN’s job is twofold: 1) coordinate the selection
of distribution trees for each channel and 2) assign groups
of clients within a given geographic region to a good
edge server. It must perform these tasks while meeting
the goals listed below.

2.2 Design goals
Video-specific quality and low cost (quality/cost
tradeoff): CDN operators must satisfy user’s expec-
tation for high video quality, while minimizing their
delivery cost. Thus, VDN must optimize for video qual-
ity directly, while considering its cost.

Internet-scale video delivery (scalability): Many
different types of workloads exist for live video: (a)

(A) All
Allocations

(B) Possible
Distribution

(C) Possible
Distribution

VS#

Content&

Requests& Response&

Congested&
R!

X! Y!

A! B!

1000!

750!
300! 700!

300!

S!

2000!
V2,!200!V1,!300!

R!

X! Y!

A! B!

S!

R!

X! Y!

A! B!

S!

Response&

T1!

T2!

T3!

Figure 3: Motivating central coordination.

“mega-events” (e.g., World Cup) serving 1M+ users [38],
(b) TV-style channels serving 100K users [3], and (c)
“long tail” user channels (e.g., Twitch, Ustream) serving
1-10,000 users [11]. (a) tends to be easier as one tree can
serve everyone, whereas workload (c) is the toughest, as
it requires coordinating across many videos. VDN must
support these workloads, out to a target scale of 10,000
channels [40] and 2000 edge clusters [17], beyond the
scale of today’s largest CDNs. Such scale is challenging
as finding the optimal placement is NP-hard.

Fine timescale (responsiveness): VDN must pro-
vide fast join time (less than a second) and fast failure
recovery, despite challenges in the wide area (e.g., incon-
sistent state, partitions, loops).

2.3 Case for centralized optimization
Despite the lack of public information on how the CDN
internal mapping is done, prior work has shown that a
control plane designed around centralized optimization
can provide great benefit [32]. In this section we focus
on the reasons for these benefits.

Coordination: Throughout this paper, we use coor-
dination to mean the ability to consider all individual
streams simultaneously. As mentioned, modern CDNs
have difficulty with this as they aggregate videos and get
“locked in” to decisions due to DNS TTLs [40]. Figure 3
illustrates why stream coordination can lead to better
resource allocation. Two video channels (V1 and V2)
originate from a single source, S. The goal is to deliver
V1 to AS A and V2 to B. Three possible distribution trees
exist: T1, T2 and T3 (Figure 3a). We present two feasible
distribution strategies in Figure 3b and c. In Figure 3b
only client A is served, whereas in Figure 3c both clients
are served. The issue is that using distribution tree T2
would congest the RY link. However, knowing this in
advance is difficult; it would require not only knowledge
of network resources, but also the placement of other
streams. A natural solution would be centralization,
which affords both a global view of the network and the
ability to coordinate streams.

This observation generalizes to large-scale networks.
Figure 4 compares a system with a global view that
places streams independently without coordination (OM
in §7) to one that has a global view and coordinates

0 2 4 6 8 10
of Videos (Thousands)

−20

0

20

40

60

80

100

120

G
ai

n
in

A
vg

.
B

itr
at

e
(%

) Coordination

Figure 4: The importance of coordinating
streams generalizes to larger systems. This
graph shows the gain of our system compared
to a multicast-style approach as we’ll see in §7.

(A) All
Allocations

(B) Possible
Distribution

(C) Possible
Distribution

VS#

Requests' Response'

R!

X! Y!

A! B!

300!

1500!
300! 1500!

2000!

S!

2000!
V2,!1500!
V2,!400!

V1,!1500!
V1,!400!

R!

X! Y!

A! B!

S!

R!

X! Y!

A! B!

S!

Response'

T1!

T2!

Content'
(Hi/Def)'
(Std/Def)'

Content'
(Hi/Def)'
(Std/Def)'

Content'
(Hi/Def)'
(Std/Def)'

Alloc:!
1000!

Alloc:!
1000!
!

Alloc:!
1500!

Alloc:!
400!
!

Figure 5: Motivating app-specific optimization.

streams (VDN in §7) for a 100 node topology. With 10K
videos, we observe up to a 100% improvement in average
bitrate.

Application-specific optimization: Generic traffic
engineering at a centralized controller is not enough; we
must perform app-specific optimization. For example,
in Figure 5, two videos are encoded as low quality (400
Kbps) and high quality (1500 Kbps) versions. Due to
bandwidth constraints (Figure 5a), we must deliver both
over link RY . We present two ways to allocate bandwidth
in Figure 5b and c. Despite fairly allocating bandwidth
between the streams, Figure 5b does worse overall, as
both clients only receive the low quality stream. Fig-
ure 5c is “unfair”, but is a better strategy as one client
is able to get the higher quality stream. Thus, careful
consideration of bitrate at the granularity of streams is
needed to provide the best quality.

From the two examples, we conclude that we can im-
prove quality with: 1) a global view of network resources;
2) coordination across streams; and 3) consideration of
the streaming bitrates. This argues for a video-specific
control plane that is logically centralized.

2.4 Case for hybrid control
Live video-specific, centralized optimization alone is not
sufficient. A fully centralized system would require new
video requests to reach the controller across WAN laten-
cies before the video could be viewed, yielding terrible
join times. Additionally, centralized optimization us-
ing an integer program can take quite long (e.g., 10s
of seconds), further impacting join time. Yet, a dis-
tributed scheme would be highly responsive as clusters

could react to requests immediately, yielding low join
times and fast failure recovery. However, we argue that
a distributed scheme is challenged to provide the high
quality demanded by users at reasonable cost, due to
the lack of coordination (§2.3).

A combination of the two schemes, with the quality
of a centralized system and the responsiveness of a dis-
tributed system would be best suited. We refer to this
combination as hybrid control. We avoid poor interac-
tions between the two schemes by exploiting properties
of our highly structured topology (§2.1) and by keeping
track of alternate paths with enough capacity for each
video channel (§4).

3 VDN system overview
VDN reuses existing CDN internal infrastructure (source
clusters, reflector clusters, edge clusters, and DNS) but
employs a new control plane based on hybrid control—a
centralized controller makes optimal decisions slowly
while clusters simultaneously make decisions quickly
based on distributed state. VDN treats each cluster
as an atomic unit (as in Figure 6) and controls the
distribution of live video from sources to clients; traffic
management within a cluster is outside the scope of this
paper.

When video v is requested at bitrate b by a client in
an AS a, a request is sent to VDN’s DNS server; the
response directs the client to send video chunk requests
to a nearby edge cluster. If this edge cluster knows about
v (i.e., has a entry for (v, b) in its forwarding table), then
it forwards the request upstream accordingly. If not, it
runs the distributed control algorithm (§4). Reflectors
pick source clusters similarly. The video chunk follows
this path in reverse. Eventually, centralized control
updates the clusters’ forwarding tables (§5).

As a control plane, VDN (1) populates application-
layer forwarding tables at each cluster with centrally
computed entries, (2) creates forwarding table entries
on-the-fly when necessary using distributed control, and
(3) updates the client to edge server mapping accordingly
in the DNS infrastructure.

3.1 Design
Physical view: VDN introduces two physical pieces to
the traditional CDN infrastructure: a logically central-
ized central controller and a local agent in each server
cluster. The central controller and local agents are each
decomposed into two pieces: (1) a control subsystem
that computes path assignments based on network state
and (2) a discovery subsystem that tracks incoming
requests and topology information.

Logical view: VDN’s control plane is driven by two
control loops, which update clusters’ forwarding tables
at different timescales. A central control loop computes
optimal distribution trees (as well as client/server map-
pings) using the algorithm described in §5. This loop
runs continuously and operates on the timescale of tens

Local control Local
discovery

Global control Global
discovery

Apache Forwarding Table

Controller

Local Agent 1 1

2

4 2

3

Global Control Loop

Local Control Loop

Cluster A

Controller

CDN

Local
Agent

 Cluster B

V1: {S} -> {B}
V2: {S} -> {A,B}
Input&

Output&

DNS

Clients

DNS

5

Figure 6: VDN system overview.

Central/
Dist.

Channel Next Hop Version Evidence
Network Stats Viewership Stats

C V0/800/* R2 15:20 Link_1: 10Mbps
Link_2: 15Mbps

V0:{800}Kbps,
3000 requests

D V0/*/* R1 15:23 Link_1: 10Mbps
Link_2: failed

V0:{800}Kbps,
3007 requests

Channel Version Next Hop

V0/*/* 15:23 R1

Routing Information Base

Forwarding Information Base

Figure 7: Sample RIB and FIB entries. The local agent uses network and viewer state as “evidence”
to decide when to override potentially stale decisions from the central controller.

of seconds to minutes. Meanwhile, the local agent runs
a distributed control loop that amends its cluster’s for-
warding table to quickly (i.e., sub-second) respond to
local changes (e.g., link failures) using distributed state.

Central control loop:

1 Local discovery measures link information and tracks
AS- and cluster-level channel viewership.

2 Global discovery collects measurements from each
cluster and builds a global network view.

3 Global control computes optimal distribution trees.

4 Local control merges local state with the global
decision and updates the forwarding table.

5 Global control updates DNS.

Distributed control loop:

1 Local discovery measures link information and tracks
AS- and cluster-level channel viewership.

2 Local control merges local state with the global
decision and updates the forwarding table.

The two loops have different views of the system, and
use their information for different purposes. The central
loop sees all clusters, the status of their links, and chan-
nel viewership information so that it can assign optimal
distribution trees. The distributed loop sees local link
conditions and video requests at one cluster as well as
a small amount of distributed state. The local agent
merges the controller’s decision with this information
and installs appropriate forwarding rules. Our hybrid
control plane strikes a balance between the high qual-
ity of a centralized system and the responsiveness of a
distributed system.

4 Hybrid control
Running two control loops in tandem can lead to chal-
lenges that destroy any benefit that either control loops
would have had individually, resulting in a“worst of both
worlds” scenario, as hinted in §2.4. When distributed
decision-making is used, hybrid control handles this by
only considering end-to-end paths that provide enough
bandwidth. In this section we examine the interactions
of our central and distributed control loops in detail and
how we balance them, as well as how hybrid control
mitigates issues in the wide-area.

4.1 Central control
Central control takes in a global view of the network
(video requests and topology information) as input and
uses the algorithm described in §5 to calculate the op-
timal configuration of distribution trees as output. To
avoid having a single point of failure, VDN uses multiple
geo-replicated controllers, synchronized with Paxos [31].
After making a decision, VDN’s central controller dis-
tributes it to individual clusters. To do this, the central
controller sends each cluster’s local agent a routing infor-
mation base (RIB) specific to that cluster, as shown in
Figure 7. VDN’s RIB contains information to support
hybrid decision-making in addition to the typical routing
information (e.g., a prefix and a next hop). In particular
the RIB maintains where the information came from
(centralized or distributed control), a version number
(timestamp), and a set of “evidence” providing the con-
text when this particular RIB entry was computed (link
and viewership information sent by this cluster to the

central controller when this decision was computed).
Evidence helps distributed control decide if it should
override the global decision.

The RIB gets merged with distributed control’s own
decision to become the Forwarding Information Base
(FIB), used by the data plane. If distributed control
decides nothing is amiss, the global RIB entry’s (channel
prefix, version number, next hop) tuple is used directly
as the FIB entry.

Discovery: In order for central control to generate
good distribution trees, it needs to have up-to-date in-
formation on the state of the network and requests.
Keeping track of new requests is relatively simple at
the edge clusters. Estimating changes in link capacity
available to applications in overlay networks (e.g., due
routing changes, background traffic, or failures) is a well
studied topic [33, 36, 39], and is thus considered out of
scope in this work.

4.2 Distributed control
Distributed control keeps track of viewership and path
information of upstream neighbors to make quick local
decisions in response to changes in network performance,
viewership, and failures. The objective is to improve
responsiveness by avoiding the costly latency of central-
ized optimization. Thus, distributed control overrides
the central decision in response to dramatic changes.

Initial requests (DNS): VDN’s DNS takes into ac-
count the user’s geographic location and AS in order to
map them to the proper edge cluster as computed by the
central controller. If this particular AS has not previ-
ously been assigned to an edge cluster, simple heuristics
are used to provide a reasonable starting assignment
(e.g., an edge cluster that already is subscribed to this
video, an edge cluster that’s typically used by this loca-
tion/AS, etc.). This provides an initial instant mapping
of clients to edge clusters.

Distributing state: Clusters distribute video subscrip-
tion and link information to other nodes via a distance
vector-like algorithm to aide in reacting to large changes.
Each cluster periodically (e.g., every second) sends all
connected clusters at the next lower layer (see Figure 2)
its “distance” from each channel+bitrate (v, b), denoted
d(v, b), representing how many hops away it is from a
cluster that is subscribed to v at bitrate b; if a cluster
is already subscribed to v at bitrate b, then d(v, b) at
that cluster is 0. Recall that we focus on live video,
thus caching is largely unhelpful; clusters only advertise
videos they are currently receiving.

When a cluster receives these distance values, it stores
them in a table (see Figure 8) along with the available
capacity of the bottleneck link on the path to that cluster
c(v, b). The cluster propagates the distance to the closest
subscribed cluster with enough path capacity for this
bitrate downwards, similar to a distance vector protocol.

For Node A Via X Via Y Via Z

To v0,b1 1, 5000! 1, 1500! 2, 4500!
To v1,b1 2, 2000! 1, 1500! 2, 4000!
To v2,b1 2, 5000! 1, 1500! 1, 3000!

Distance & Capacity Table

Figure 8: Example of the distributed state table
used in Algorithm 1.

Reacting to large changes: If local discovery has
detected significant changes in the local network state
or viewership used to calculate the most recent central
decision (i.e., the “evidence” in the RIB entry), it con-
cludes that its current central forwarding strategy is out
of date. Specifically, a cluster considers a RIB entry
stale if one or more of the following conditions are met:
• A link referenced in the evidence changes capacity

by some percentage (e.g., 20%) set by the operator.

• A link, node, or controller fails, as detected by a
timeout.

• It receives a request it doesn’t have a FIB entry for.

Input: request for channel v, bitrate b

Output: next-hop cluster for channel v, bitrate b

/* randomly pick a parent that has a
min-hop path to (v, b) with enough
capacity to support delivery */

use f ul := ∅
for parent in parents do

if d(v, b)via parent == min(d(v, b)) and
c(v, b)via parent > b then
use f ul = use f ul ∪ {parent }

end

end
return pick at random(use f ul)

Algorithm 1: Distributed control algorithm.

If the global“evidence” is deemed invalid, a forwarding
strategy is computed by Algorithm 1, using local request
and link information as well as the distributed state
from upper nodes (Figure 8).

For example, when a cluster receives a request for a
video it’s not subscribed to, it uses its table to forward
the request to the parent “closest” (based on “distance”
d() values) to the video that has enough spare path ca-
pacity (c()). If there are no paths available the request
is denied, to be serviced by a different edge cluster. It
breaks ties randomly to avoid groups of clusters poten-
tially overloading a high capacity cluster after failure. If
the parent is not already subscribed to the video, the
process repeats until a subscribed cluster is found. The
algorithm produces a forwarding strategy that VDN
places in the RIB and FIB of the cluster for future use
(Figure 7). Large-scale link variations, link failures, and
node failures, can all be handled by treating the existing
videos as new requests.

Discussion: The algorithm ensures that video streams
that deviate from global control only traverse paths with
enough spare capacity to support them. This is critical
because it means that (1) if the parent of a cluster
is already subscribed to the requested video (and has
ample bandwidth to the requesting cluster), requests to
this cluster will not propagate past the parent (i.e., 1
hop), (2) more generally, in an n-level CDN (where n

is typically 3 today), only n − 1 clusters are affected by
network / viewership changes as clusters only forward to
parents on a path with enough capacity, always reaching
source nodes after n − 1 hops, and (3) clusters that
are involved in this algorithm will not be forced to
degrade the quality of an existing stream, as we know
there is enough capacity on the path to support the
incoming request. Thus, the distributed algorithm will
not interfere with central control’s already implemented
decisions.

Note, through the use of local/global discovery, the
central controller will eventually become aware of new
requests and failures. By checking evidence in the RIB,
clusters will know when central control has “caught up”
to the current network state at which point they make
the past local decisions obsolete.

4.3 Issues in the wide area
Handling state transitions: When requests are sent
up the distribution tree for a given channel, they are
tagged with the version number from the RIB. VDN
keeps previous versions of the FIB (“shadow FIBs”) to
allow clusters to forward requests with old version num-
bers (e.g., during global state transitions), similar to
previous work [20, 28, 34]. When an unknown version is
encountered, VDN resorts to using distributed control.

Partitions: Versioning helps with network partitions,
where some clusters no longer receive updates from the
central controller. Clusters that are partitioned (“in-
visible” clusters from the controller’s perspective) can
still interact with “visible” clusters by using these old
version numbers. Eventually the partitioned clusters will
switch to exclusively distributed control after they detect
that they’re partitioned (e.g., after a controller timeout).
As distributed control and central control interact in
beneficial ways, partitions are also not a problem.

Loops: Our system cannot have loops as requests
only travel “upwards” towards sources, and responses
“downwards” towards ASes in our hierarchy.

5 Centralized optimization
This section describes our optimization algorithm that
maximizes the overall service VDN delivers to each video
channel while minimizing cost. Our algorithm takes in
video requests and topology information and outputs
the best way to distribute those videos. While the for-
mulation is relatively straightforward, the easiest way
to achieve scalability is to eschew finding the true opti-
mal solution in favor of finding a good approximately
optimal solution that can be computed relatively fast.

max ws ∗
∑

l∈LAS ,o∈O Priorityo ∗Requestl ,o ∗ Servesl ,o
− wc ∗

∑
l∈L ,o∈O Cost(l) ∗ Bitrate(o) ∗ Servesl ,o

subject to:
∀l ∈ L, o ∈ O : Servesl ,o ∈ {0, 1}

∀l ∈ L :
∑

o Bitrate(o) ∗ Servesl ,o ≤ Capacity(l)

∀l ∈ L, o ∈ O :
∑

l ′∈InLinks(l) Servesl ′ ,o ≥ Servesl ,o

Figure 9: Integer program at the controller.

The optimization is called iteratively (around once a
minute) allowing parameters (e.g., measured capacities,
link costs, new requests) to be modified each iteration.

Input: Videos: We denote a set of live video channels
as V = {v1 , . . . , vk }. Each video channel v has its own
set of bitrate, Bv . Our system treats each item in V × B

as a distinct video object. We denote the set of video
objects as O = {o1 , . . . , om }. Bitrate(o) is the bitrate of
the video object o in Kbps. Every video object o has a
priority weight associated with it, Priorityo > 0, set by
operators indicating how important it is to serve o.
Topology: Our network topology (see Figure 10a) is a
directed graph made of server clusters (sources, reflectors,
and edges as explained in §2) and ASes, connected by
links {l1 , . . . , ln } ⊂ L in a four-tier topology. We assume
each video object is available at each source cluster
(not unreasonable [35], but not fundamental). We add
additional dummy links out of every AS node in the
graph 1. We refer to this set of dummy links as LAS ⊂ L.
For some link l = (s, s′), InLinks(l) is the set of incoming
links to s.
Link capacities: Each link l ∈ L has a capacity defined
by Capacity(l), in Kbps. This capacity is the measured
amount of capacity of the overlay link available to video
delivery (i.e., the overall path capacity minus background
traffic), which is updated by information from local
discovery.
Link costs: Additionally, each link l ∈ L has a cost
defined by Cost(l) indicating the relative price for de-
livering bits over that link. This cost can vary over
time (i.e., updated between iterations of the ILP) as
updated by management (e.g., after business negotia-
tions a link is perhaps free: Cost(l) = 0; perhaps cost
varies based on usage, such as “95-percent-rule” billing;
or even more complicated policies such as a cap on total
externally-bound traffic, etc.).
Requests are associated with a link in LAS (i.e., a re-
questing AS) and a video object. For some link l ∈ LAS

associated with an AS a, if a request for video o origi-
nates from a then Requestl ,o = 1, else Requestl ,o = 0.
Weights: The system operator provides a global weight
for cost wc ≥ 0 and a global weight for service ws ≥ 0
to strike a balance between service and cost.

Formulation: Figure 9 presents our problem formula-
tion. The optimization takes the following as input (and
treats them as constants): ws , wc , Priority, Request,

1This is a common technique in optimization to make
the formulation easier.

Bitrates((
(Kbps) Priori0es Requests((at(Start)(

V1([200,(800]([1,(1]((A,(800),((B,(800)(

V2([300,(900]([1,(100](None(

(a) Link capacities (kbps) and costs((b) Optimization Output(

R(

X(Y(

A(B(

1000(2000(

1000(800(800(

S(

2000(

R(

X(Y(

A(B(

V1,(800(

V2,(900(

S(

R(

X(Y(

A(B(

V1,(800(

S(

New request: V2, (A, 900)!

V1,(800(

Service(Weight 1000(

Cost(Weight(0.1(

V1,(800(

1(

1(

1(

1(1(
10(

Figure 10: Example input and output of the cen-
tralized optimization.

Cost, Bitrate, Capacity, and InLinks. It outputs vari-
ables Servesl∈L ,o∈O ∈ {0, 1}, which indicates whether
video object o should be distributed over link l.

Our objective function directly maximizes ser-
vice, while simultaneously minimizing its cost
(i.e., max : service − cost). We model service as∑

l∈LAS ,o∈O Priorityo · Requestl ,o · Servesl ,o . Thus we
only serve videos objects to ASes that requested them,
with the biggest wins coming from higher priority video
objects. Service is only improved if a requested video
reaches its destined AS. As for priority, we explore var-
ious schemes (exploring the quality/quantity tradeoff)
in §7. We model cost as

∑
l∈L ,o∈O Cost(l) · Bitrate(o) ·

Servesl ,o , the amount of data being transferred around
(and out of) the CDN times the link costs.

Our constraints encode the following:
1. A link either does or doesn’t send a video.
2. Obey the link capacity constraint.
3. Only send videos you’ve received.

Output: Servesl ,o , determines a set of distribution
trees for every requested video. This can be easily trans-
lated into forwarding tables for incoming requests within
the CDN internal network, and DNS records for mapping
clients to edge clusters.

Example: Figure 10 gives an example input with two
channels V1 and V2, with bitrate streams of [200, 800] and
[300, 900] kbps respectively. We see that the operator
has decided that video object (V2, 900) has a very high
priority (100)—this may be a stream viewers pay to
watch (e.g., a pay-per-view sports event). Figure 10a
shows the topology, link capacities, and costs. Link
Y A has a relatively high cost of 10. Figure 10b shows
the optimization result in which two requests for V1 are
satisfied. Note, the optimization avoids using the high
cost Y A link, even though it would have cut down the
total number of links used, reducing redundant data
transmissions. Once a third request is added (for the
high priority stream V2), we observe that Y A is used, as
the video’s priority outweighs the high link cost.

100 101 102 103

Time (s)
10−2

10−1

100

101

102

103

M
IP

G
ap

(%
)

2K
4K
6K
8K
10K
25K

Figure 11: The MIP gap of the centralized op-
timization shows rapid improvement in a short
time-frame, even for large numbers of videos.

Approximating optimality: An integer program can
take a very long time to find an optimal solution. We
employ two techniques (initial solutions and early termi-
nation) for fast approximation.

Often a good initial solution can dramatically reduce
the integer program runtime. Although it’s tempting to
reuse the previous central decision as the initial solution
for the next iteration, our formulation changes enough
(e.g., new link capacities, video requests, etc.) per itera-
tion that our previous decision may no longer be valid.
Thus, we instead we calculate an initial solution greedily.

Another important parameter of integer programs is
the termination criteria. Often integer programs will
find a feasible solution very quickly that is only slightly
worse than optimal, then spend many minutes working
towards the optimal solution. This time/quality tradeoff
guides our decision to use a timeout to terminate our
optimization. In Figure 11 we plot the MIP gap2 as a
function of computation time for differing numbers of
videos. We see that for all series up to our target scale of
10,000 videos (see §2.2), a 60 second timeout can provide
an almost optimal solution (e.g., ∼1%)). Although 60
seconds may seem like a long timescale for optimization
with respect to view duration, live video viewers watch
on average 30 minutes per session [1], making this a
reasonable target.

6 Prototype implementation
Control plane: We build a prototype central controller
that uses Gurobi [21] to solve the integer program. For
trace-driven experiments, we run the controller on an
r3.8xlarge EC2 instance [8]. For end-to-end experiments,
since our testbed is smaller, we run the controller on a
machine with a 2.5GHz quad-core Intel Core i5 processor
with 4GB of RAM. For these experiments, our controller
communicates with data plane nodes over the public
Internet, with ∼10ms latency. We believe this to be
representative of a real-world deployment.

Data plane: We also build a prototype data plane us-
ing Apache [16] running on t2.small EC2 instances. Our
data plane uses standard Apache modules: mod proxy
configures nodes as reverse HTTP proxies and mod cache

2The distance between the current upper and lower
bounds expressed as a percentage of the current upper
bound

gives us multicast-like semantics. The use of Apache
is representative of a real-world deployment as modern
live video streaming is HTTP-based. Since these nodes
communicate with the controller across the WAN, we
see realistic cross-traffic, loss, and delays representative
of a real-world deployment.

7 Evaluation
We evaluate VDN in two ways: a trace-driven evaluation
of the central optimization focusing on the quality/cost
tradeoff and scalability; and an end-to-end wide-area
evaluation to test the responsiveness and performance of
hybrid control in the presence of variation and failures
in real-world environments.

7.1 Trace-driven evaluation
We answer three questions:
1. Does VDN improve video quality and reduce cost?

VDN improves the average bitrate at clients by 1.7×
in heavy-tail scenarios and can reduce cost by 2× in
large-event scenarios over traditional CDNs.

2. How does VDN scale? How sensitive is VDN to the
network topology? We scale VDN’s control plane to
10K videos and 2K edge clusters and see it performs
well even with low topological connectivity.

3. How much control do operators have over VDN?
The knobs offered by VDN are sensitive enough for
operators to fine-tune the quality/cost tradeoff and
distribution of service over bitrates and videos.

Traces: We evaluate the efficacy of our controller with
three traces representative of common workloads:
• Average Day: A one-hour trace from a service provider

with detailed client-side analytics for a large number
of live video providers. It is comprised of 55,000
requests for 4,144 videos from 2,587 cities (18,837
clients) and an average request bitrate of 2725 Kbps.
This trace has a long tail: 7% of the videos account
for 50% of the requests. This represents an average
day for a low-demand live video service.

• Large Event: A partially synthetic trace made by
adding four concurrent sports games with 1 million
simultaneous viewers each to Average Day. It is com-
prised of 48M+ requests for 4,148 videos from 2,587
cities (4M clients) and an average request bitrate
of 2725 Kbps. This trace has a very heavy head:
99.89% of requests are for one of the sports games.
This represents a heavy (but easily coordinated) load.
Although the requests are synthesized, the request
bitrate and arrival times maintain the same distribu-
tion as the raw trace.

• Heavy-Tail: A synthetic trace generated from Average
Day imposing a heavy tail distribution with narrower
bitrate variety. It is comprised of 240,000 requests
for 10,000 videos from 2,587 cities (82,000 clients)
and an average request bitrate of 6850 Kbps. This
trace has a heavy tail: the lowest 99% of videos (the
tail) account for 60% of requests. Bitrates are drawn

from the recommended 240p, 480p, 1080p (400, 1000,
4500 Kbps) guidelines from YouTube live [44], with
an additional bitrate of 30 Mbps representing future
4K streams. This represents a heavy load that is hard
to coordinate, akin to Twitch or Ustream. Although
this trace is synthesized, the mapping of clients to
cities and the request arrival times maintain the same
distributions as the raw trace.

Topology: The traces contain no information about
the internal CDN topology, so we generate a three-tiered
topology similar to current CDNs [35] consisting of 4
source clusters, 10 reflectors, and 100 edge clusters. Aka-
mai has roughly 1,800 clusters (1,000 networks) located
worldwide [17], so this is roughly the right scale for US-
wide distribution. We push the scale of the topology
up to 2,000 clusters in some experiments. We use a
“hose model” to determine link capacities in our overlay
network. Each source is given 1 Gbps to split between
100 Mbps overlay links to each of the 10 reflectors. Each
reflector has 3 Gbps to split into 100 Mbps overlay links
to 30 of the 100 edge clusters. Each edge cluster is given
9 Gbps to connect to clients. We chose these capacities
based on the high cost of long-haul WAN links (see §2.1).

Our prototype considers requests at the granularity of
client groups, which we define to be (city, AS) pairs; we
assume caching and/or multicast with a client group can
efficiently distribute videos to individual users. Edge
clusters are randomly placed in the 100 largest cities
(determined by number of requests from that city) and
each client group is connected to the 3 nearest edge
clusters with 150 Mbps overlay links. (Cities in our
traces are anonymized, so each city ID is randomly
assigned a coordinate on a 2D grid to estimate latency.)

In addition, we assign each link a cost, loosely mod-
eling a CDN’s cost for transferring data on that link.
Source-reflector and reflector-edge link costs vary from
10 to 50 units over a normal distribution. Links from
edge clusters to client groups are handled differently:
half have a cost of 0, since CDNs often strike deals with
edge ISPs [2]; the remaining half vary from 1 to 5.

Methodology: We break each trace into one minute
windows and compute distribution trees for each window
using VDN and three additional strategies:
• Everything Everywhere (EE)—This strawman naively

tries to stream all videos to all edge clusters so clients
can simply connect to the nearest cluster.

• Overlay Multicast (OM)—This strawman represents
an “optimal” overlay multicast-like scheme. Each
video channel individually computes the distribution
tree with the highest quality (found using our in-
teger program). This is effectively VDN without
coordination across channels.

• CDN—We model a DNS-based CDN that extensively
monitors links and servers [2, 29, 35, 40]. As there is
not public information on the specific algorithm used
to produce these DNS mappings, we use the following
model (based on measurement studies [32, 40] and

EE OM CDN VDN

Avg. Bitrate 624 2,725 2,725 2,725
Cost / Sat. Req. 174 1.1 1.54 1

Clients at BR 12% 100% 100% 100%

Table 1: Average Day trace.

EE OM CDN VDN

Avg. Bitrate 0.08 2,725 2,725 2,725
Cost / Sat. Req. 167K 1.1 2.0 1

Clients at BR 0% 100% 100% 100%

Table 2: Large Event trace.

EE OM CDN VDN

Avg. Bitrate 812 1,641 2068 3,454
Cost / Sat. Req. 7.7 4.1 1.2 1

Clients at BR 25% 34% 54% 78%

Table 3: Heavy-Tail trace.

0 2 4 6 8 10
of Videos (Thousands)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
vg

.
B

itr
at

e
(K

bp
s)

VDN
CDN
CDN-1
OM
EE
UB

(a) Avg. client bitrate.

0 2 4 6 8 10
of Videos (Thousands)

20

30

40

50

60

70

80

90

100

%
S

at
.

at
R

eq
ue

st
ed

B
R

VDN
CDN
CDN-1
OM
EE
UB

(b) % at requested bitrate.

0 2 4 6 8 10
of Videos (Thousands)

0

50

100

150

200

D
ec

is
io

n
Ti

m
e

(s
)

VDN
CDN
OM
EE

(c) Processing time.

Figure 12: Scaling load: increasing the number of videos.

a high-level description [2, 35]): upon receiving a
request for a new video, a cluster picks the parent
with the highest path capacity that is already sub-
scribed to that video. If no parents are subscribed, it
picks the parent with the highest path capacity. ASes
are mapped to edge clusters that are geographically
close (based on their city ID) and lightly loaded. Un-
like OM, CDN does not focus on optimal end-to-end
paths, just individual overlay links. This model is
more fine-grained than an actual CDN as it considers
each video independently [40]. CDN assumes that
server selection is stored in a DNS cache with a TTL
of 30 seconds [40]. We also test a variant, CDN-1,
with a 1 second TTL. Note that CDN-1 would cause a
large number of DNS requests, especially if combined
with VDN’s per-video control.

Metrics: We use three performance metrics:
• Average Client Bitrate—The average bitrate de-

livered to each client in the trace.

• Cost / Satisfied Request (Cost / Sat. Req.)—The
cost of data transfer per client who receives the bi-
trate they request, i.e., the sum over all links of (link
cost × usage) / number of satisfied requests.

• % of Clients Satisfied at Requested Bitrate (Clients
at BR)—What percentage of the client requests
were served at the bitrate they requested? (Clients
not served will re-request at lower bitrates.)

7.1.1 Trace results
Tables 1, 2, and 3 summarize the results across our work-
loads. Each number is the average across one minute
time windows in the trace. In Average Day and Large
Event, VDN, CDN, and OM serve all videos at their re-
quested quality (thus achieving the best possible average
bitrate for the trace). Additionally, VDN reduces the
delivery cost by 1.5-2× compared to CDN. As CDN and
VDN both satisfy all clients, this decrease in cost must

come from VDN finding lower cost distribution trees
than CDN. The Large Event workload is easy to satisfy
as almost all edge clusters should receive the four sports
games. OM is as effective as VDN in both workloads.

Heavy-Tail is the toughest workload to coordinate.
VDN provides a 1.7× improvement in quality, while serv-
ing 24% more clients at their requested bitrate. This
is because other schemes react to requests individually;
DNS-based schemes like CDN get “locked in” to decisions
until DNS records time-out, making it hard to coordinate
streams, whereas VDN performs optimization across all
requests simultaneously. With OM, the lack of coordina-
tion causes a 44% degradation in satisfied requests and
a 4× increase in cost.

7.1.2 Exploring the parameter space
Next we use our traces to evaluate the control plane
scalability and the topology sensitivity of VDN. Through-
out, we compute naive upper bounds (UB) on “average
bitrate” and “% satisfied at requested bitrate” by com-
paring the demand placed on each level in the topology
to the aggregate capacity at that level.

Control plane scalability: As we increase the num-
ber of videos and the size of the topology, we are inter-
ested in (1) the quality of the assignments VDN makes
and (2) the time it takes to compute those assignments.

Number of videos: In Figure 12, we augment Heavy-
Tail with increasing numbers of videos and requests,
keeping the video/request ratio, topology, and capacity
constant. As we stress the system, it becomes more
difficult to place videos. Thus, coordination becomes
more important with less spare capacity in the network.
Since VDN considers all streams simultaneously, unlike
CDN and OM, as load increases the gap between them
grows in terms of both quality (up to 1.6×; Figure 12a)
and the number of clients satisfied at the requested
bitrate (Figure 12b). CDN-1 does marginally better

0 500 1000 1500 2000
of Edge Clusters

10

20

30

40

50

60

70

80

90

100
%

S
at

.
at

R
eq

ue
st

ed
B

R

VDN
CDN
CDN-1
OM
EE
UB

(a) % at requested bitrate.

0 500 1000 1500 2000
of Edge Clusters

0

10

20

30

40

50

60

70

D
ec

is
io

n
Ti

m
e

(s
)

VDN
CDN
OM
EE

(b) Processing time.

Figure 13: Scaling network size: increasing the
number of edge clusters.

(2
, 2

, 2
)

(4
, 3

, 3
)

(4
, 5

, 3
)

(4
, 8

, 3
)

(4
, 1

0,
3)

Link Config

0

500

1000

1500

2000

2500

A
vg

.
B

itr
at

e
(K

bp
s)

VDN
CDN
CDN-1
OM
EE
UB

(a) Avg. client bitrate.

(2
, 2

, 2
)

(4
, 3

, 3
)

(4
, 5

, 3
)

(4
, 8

, 3
)

(4
, 1

0,
3)

Link Config

0

20

40

60

80

100

%
S

at
.

at
R

eq
ue

st
ed

B
R

VDN
CDN
CDN-1
OM
EE
UB

(b) % at requested bitrate.

Figure 14: Topology sensitivity: (x , y, z) indicates
reflectors are connected to x sources, edge clusters to y

reflectors, and client groups to z edge clusters.

than CDN, but a system with asynchronous control
plane updates (e.g., VDN) does substantially better, as
expected. Interestingly, OM satisfies fewer clients than
CDN, most likely due to OM grabbing key resources
early, starving later clients.

As expected, VDN’s improved assignments come at
the cost of longer decision times (Figure 12c). However,
in this experiment, we intentionally pushed the system
outside the bounds of reality; in realistic scenarios for
this topology and workload (up to 6,000 videos), decision
time remains under 60 seconds (in line with §5). In the
real world, if a CDN expects to serve upwards of 6,000
videos in a heavy-tail workload, we imagine the network
capacity would be upgraded as well.
Network size: We expand Average Day to 10K videos (to
increase demand) and vary the number of edge clusters
(Figure 13). We see that VDN maintains the ability to
satisfy roughly 90% of clients at their requested bitrate
(effectively the naive upper bound) in under 60 seconds
for this workload (as opposed to Heavy-Tail, which re-
quired 190 seconds; Figure 12c).

Topology sensitivity: Next, we explore the impact
of the network topology on VDN, CDN, CDN-1, OM, and
EE. We vary two aspects of the topology: (1) the degree
of connectivity between tiers of the CDN and (2) the
aggregate network capacity between tiers.
Network connectivity: Figure 14 shows the impact of
network connectivity. As we increase the number of links
between tiers, we decrease their individual capacities

0 5 10 15 20 25
of Videos (Thousands)

0

5

10

15

20

25

30

35

40

45

%
In

cr
ea

se
in

A
vg

B
itr

at
e

Src/Refl
Refl/Edge
Edge/Client

(a) Avg. client bitrate.

0 5 10 15 20 25
of Videos (Thousands)

−20

−10

0

10

20

30

40

%
D

ec
re

as
e

in
C

os
t

Src/Refl
Refl/Edge
Edge/Client

(b) Cost.

Figure 15: Bottleneck location: improvement over
CDN with the bottleneck between source/reflector links,
reflector/edge cluster links, and edge cluster/client links.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Cost (Normalized)

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

A
vg

B
itr

at
e

(K
bp

s)

VDN
CDN
CDN-1
OM

(a) Quality vs. cost: the
weight of the cost term is var-
ied from 1 to 0.

Quality Balanced Quantity
Video Priority Scheme

0

20

40

60

80

100

%
S

at
.

at
R

eq
ue

st
ed

B
R

240p
480p
1080p
4K

(b) Quantity vs. quality:
impact of video prioritization
strategies.

Figure 16: VDN gives operators fine-grained
control.

so the aggregate capacity between those tiers remains
constant. In general, a less connected topology is going
to be easier to manage as fewer links potentially means
fewer failures. CDN performs better in highly connected
topologies, likely because it has more opportunity to find
upstream neighbors that already have the video they’re
looking for. VDN, on the other hand, is not significantly
affected; it is able to effectively use a small number of
large links. OM does not benefit from more connectivity
as it focuses on path quality rather than link quality.

Bottleneck placement: We evaluate the impact of the
location of capacity bottleneck. We begin with the
topology described in §7.1; the aggregate capacity from
sources to reflectors is 4 Gbps, from reflectors to edge
clusters is 30 Gbps, and from edge clusters to client
groups is 900 Gbps (denoted (4, 30, 900) and named
Source Constrained). We now construct two additional
topologies: Reflector Constrained (400, 30, 900) and Edge
Constrained (4000, 3000, 900).

Figure 15 shows VDN’s percentage improvement over
CDN as a function of number of videos (generated from
Average Day). We see the largest gains in Source Con-
strained; we expect this scenario to be the most realistic
since their long-haul links are more expensive than links
at the edges (as pointed to by Akamai [2, 7]). In all three
cases, VDN improves average bitrate (Figure 15a). It
also reduces cost up through 6,000 videos (Figure 15b),
at which point (in Source Constrained) it slightly in-
creases cost in favor of 28%-45% quality improvements—
next, we discuss how to explicitly control this tradeoff.

0 50 100 150 200
of channels

0

200

400

600

800

1000

1200

1400
A

ve
ra

ge
B

itr
at

e
(K

bp
s)

Light Load Med. Load Hvy. Load

VDN
Fully Centralized
Fully Distributed
Optimal

(a) Avg. client bitrate.

0 50 100 150 200
of channels

0

5

10

15

20

25

Jo
in

Ti
m

e
(S

ec
on

ds
)

Light Load Med. Load Hvy. Load

VDN
Fully Centralized
Fully Distributed

(b) Join time.

0 50 100 150 200
of channels

0

10

20

30

40

50

60

70

80

B
uf

fe
rin

g
R

at
io

(%
)

Light Load Med. Load Hvy. Load

VDN
Fully Centralized
Fully Distributed

(c) Buffering ratio.

Figure 17: Client-side quality in testbed: increasing the number of videos.

7.1.3 Customizing VDN
Quality vs. cost: By adjusting the weight of the global
cost term in the objective function, operators can tune
the quality/cost tradeoff. Figure 16a shows an ROC-like
curve depicting the average bitrate and data transfer
cost in Heavy-Tail as the weight of the cost term varies
from 1 to 0. For comparison, we plot CDN, CDN-1, and
OM’s performance on the same trace. VDN achieves
about a 1.7× increase in performance over CDN for the
same cost (1.5× over OM and CDN-1), or can reduce
cost by 60% at similar quality.
Quality vs. quantity: VDN allows operators to assign
each (video, bitrate) pair a priority. We test three prior-
ity assignment strategies: Quality (priority = bitrate),
Balance (priority = 1), and Quantity (priority =
1/bitrate). Quality favors serving high bitrate streams;
Quantity favors serving as many streams as possible.
Figure 16b shows the percentage of satisfied requests
for each strategy broken down per bitrate for Heavy-
Tail. Quality favors the 4K streams and Quantity favors
sending more streams overall, as expected. This allows
operators to not only control how things are delivered,
but what is delivered (e.g., ensuring premium customers
always receive HD streams even when many free cus-
tomers request SD streams).

7.2 End-to-end experiments
We answer two questions:

1. Is VDN highly responsive? VDN reacts to events
at a timescale of 200 milliseconds while staying
within 17% of the optimal decision.

2. Does VDN cope well with the issues of a wide-
area environment? Hybrid control allows VDN to
function well despite losing controller updates and
performs similarly to other schemes during high
link fluctuations (traffic dynamics).

Setup and topology: We use 10 co-located nodes
on EC2 [8], each representing a cluster, configured in a
three-tiered CDN topology (described in §2). Two nodes
are sources, another two are reflectors, and the remaining
six are edge clusters. Each tier is fully connected to the
next one, with measured link capacities of 75 Mbps. The
controller is located outside of EC2 in the eastern US,
communicating with EC2 via the public Internet.

Methodology and traffic: To demonstrate the bene-
fits of hybrid control, we compare VDN to two other de-
signs. Fully Distributed relies entirely on the distributed
control algorithm in §4 and Fully Centralized uses only
the centralized controller in §5. For each experiment we
generate 200 videos, each requested by one client to a
random edge cluster. Each channel has multiple bitrates:
200 Kbps, 600 Kbps, and 1.4 Mbps. We add a new chan-
nel to the system once a second. With 10 nodes and
75Mbps links, 100 videos can easily place great load on
the system. 100 videos * 1.4Mbps is ∼150 Mbps, filling
two of the four source/reflector links. 200 videos would
fill all four links, overloading the system. The video
client is a simple HTTP chunk requester that always
fetches a new chunk 2 seconds (the chunk duration) after
the previous chunk was received.

7.2.1 Quality of experience
Figure 17a shows the average client bitrate as requests
are added. Similar to the trace-driven evaluation, in a
system with medium load, VDN gives up to a 2x per-
formance gain over Fully Distributed. As the system
becomes more loaded, Fully Distributed sharply drops
while VDN and Fully Centralized decay gradually. Even
when the system is under medium loaded, VDN stays
close to the controller’s original decision (Optimal). Once
the system reaches heavy load (∼150 videos), other prob-
lems emerge (e.g., connection establishment overhead,
request incast) causing performance to decay.

In Figure 17b, we see that VDN is highly responsive.
Although Fully Centralized provides good average bitrate
during load, its join time (time from request to first
byte of video) suffers (∼7 seconds, compared to VDN’s
∼200 milliseconds). Fully Distributed also provides sub-
second join times, but as the system gets loaded, it sees
massive spikes in latency as the lack of coordination
overloads interior clusters.

Figure 17c shows buffering ratio. Despite having good
quality overall, Fully Centralized has a much worse buffer-
ing ratio due to its lack of responsiveness.

7.2.2 Coping with network events
Figure 18a shows the effects of link fluctuations. We
select 25% of links at random, degrade their capacity by
increasing amounts (using tc), and measure the perfor-

0 20 40 60 80 100
% Link Capacity Change

200

400

600

800

1000

1200

1400
A

ve
ra

ge
B

itr
at

e
(K

bp
s)

VDN
Fully Centralized
Fully Distributed

(a) Link fluctuation.

0 20 40 60 80 100
% of Updates Dropped

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

B
itr

at
e

(K
bp

s)

VDN
Fully Centralized

(b) Updates dropped.

Figure 18: VDN handles network issues without
much degradation.

mance 10 seconds after adding 10 channels. We see that
all three systems perform similarly.

Figure 18b shows the effects of loss. We drop updates
from the controller and measure the performance 10
seconds after adding 10 channels. As expected, Fully
Centralized performs much worse as updates are dropped.
VDN performs well even when it starts to lose all update
messages by falling back to distributed control.

8 Discussion
Complexity versus improvement: Despite the in-
herent complexity of hybrid control, VDN manages to
provide a significant monetary benefit (2×) to CDN op-
erators as well as increased flexibility (see Figure 16a and
16b). Additionally, VDN provides a centralized point
of management to adjust link costs and video priorities.
Furthermore, as seen in §7, simple tweaks on current
CDNs, like shorter TTLs, don’t provide these benefits.

Alternate topologies: We assume an n-tiered topol-
ogy as we feel this is representative of modern CDNs [2,
29, 35, 40]. Additional work would be needed to fit our
scheme to arbitrary topologies.

Client-side bitrate adaptation: Although not ex-
plicitly included in our system, we assume clients inde-
pendently do bitrate adaptation through some black-box
assessment of delivery quality. Distributed control al-
lows VDN to quickly respond to bitrate switching, but
we assume that the rate of switching is fairly low [9].

9 Related work
Content delivery networks: Large- (e.g., [29, 35])
and medium-scale (e.g., [18, 42]) CDN systems have ex-
plored various design choices, including peer-to-peer,
hybrid [22, 43], centralized, or hierarchical architec-
tures [24] as well as their tradeoffs [45]. None of these
papers provides the key combination of global coordi-
nation, video-specific optimization, cost-minimization,
attention to live-video specific issues, and practical end-
to-end system design.

Overlay multicast: Prior work on providing the
sustained high-throughput connections needed for live
video [12, 14, 26, 30] focuses on how to best organize
individual streams. However, they do not perform ex-
tensive coordination across video streams. P2P-based

approaches [30] can potentially benefit VDN, but may
cause additional issues with hybrid control (e.g., loops)
as they complicate the topology.

Traffic engineering: Recent work [13, 15, 23, 25]
shows the benefits of centralized traffic engineering in
ensuring high utilization and fairness in both intra- and
inter-datacenter settings. Unlike VDN, they work on
flow aggregates at coarse timescales, making it hard
for them to provide the fine-grained dynamic control
required for live video.

Video optimization: There is much prior work on
understanding and improving video delivery, including
client-side bitrate adaptation [27], metrics [9, 10], cross-
CDN optimization (e.g., [32]), and CDN-selection strate-
gies (e.g., [19]). Our work focuses on end-to-end delivery
and provides a practical system design.

10 Conclusion
VDN is a platform for live video delivery that helps
balance the concerns of both users and CDN operators
by providing real-time control over individual streams
from the CDN side. VDN employs centralized quality
optimization and hybrid control for responsiveness. We
show that centralized optimization can greatly improve
video quality while minimizing cost. Our hybrid control
plane mitigates WAN challenges, providing quick join
times and responsiveness to failures. Using a live video
trace, we show that VDN provides a 1.7× improvement
in average bitrate and a 2× reduction in delivery cost in
different scenarios. Using Amazon EC2, we show that
our design is responsive at a timescale of 200 ms.

Acknowledgments
The authors would like to thank Nicolas Feltman for
help with the ILP, Eric Anderson and Raja Sambasi-
van for help with distributed control, JungAh Hong for
help with the initial evaluation, Dave Oran for shepherd-
ing this paper, and the anonymous reviewers for their
feedback. This work is supported in part by the NSF
under award #CNS-1345305, NDSEG Fellowship 32
CFR 168a, the National Research Foundation of Korea
(NRF-2013R1A1A1076024), and the IITP under grant
No. B0126-15-1078 funded by the Korean Government
(MSIP).

11 References
[1] Ooyala global video index q3 2013.

http://go.ooyala.com/rs/OOYALA/images/
Ooyala-Global-Video-Index-Q3-2013.pdf.

[2] Private conversation with Bruce Maggs, vice president,
research at Akamai.

[3] Private conversation with Hui Zhang, chief executive officer,
at Conviva.

[4] Twitch. http://twitch.tv.
[5] Twitch is 4th in peak us internet traffic.

http://blog.twitch.tv/2014/02/
twitch-community-4th-in-peak-us-internet-traffic/.

[6] I. Sodagar. The MPEG-DASH Standard for Multimedia
Streaming Over the Internet. IEEE Multimedia (2011).

[7] Akamai. Akamai investor summit: 2013. http://www.
akamai.com/dl/investors/2013 ir summit presentation.pdf.

[8] Amazon. Amazon Elastic Compute Cloude (Amazon EC2).
http://aws.amazon.com/ec2/.

[9] Balachandran, A., Sekar, V., Akella, A., Seshan, S.,
Stoica, I., and Zhang, H. A quest for an internet video
quality-of-experience metric. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks (New York,
NY, USA, 2012), HotNets-XI, ACM, pp. 97–102.

[10] Balachandran, A., Sekar, V., Akella, A., Seshan, S.,
Stoica, I., and Zhang, H. Developing a predictive model
of quality of experience for internet video. In Proc. ACM
SIGCOMM (2013), ACM, pp. 339–350.

[11] Bashore, A. Twitch stats. http://stats.twitchapps.com/.
[12] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi,

A., Rowstron, A., and Singh, A. Splitstream:
high-bandwidth multicast in cooperative environments. In
ACM SIGOPS Operating Systems Review (2003), vol. 37,
ACM, pp. 298–313.

[13] Chowdhury, M., Zaharia, M., Ma, J., Jordan, M. I.,
and Stoica, I. Managing data transfers in computer
clusters with orchestra. SIGCOMM CCR 41, 4 (2011), 98.

[14] Chu, Y., Rao, S., Seshan, S., and Zhang, H. Enabling
conferencing applications on the internet using an overlay
muilticast architecture. ACM SIGCOMM computer
communication review 31, 4 (2001), 55–67.

[15] Fortz, B., Rexford, J., and Thorup, M. Traffic
engineering with traditional ip routing protocols.
Communications Magazine, IEEE 40, 10 (2002), 118–124.

[16] Foundation, A. Apache HTTP Server Project.
http://httpd.apache.org/.

[17] Frank, B., Poese, I., Lin, Y., Smaragdakis, G.,
Feldmann, A., Maggs, B., Rake, J., Uhlig, S., and
Weber, R. Pushing cdn-isp collaboration to the limit.
ACM SIGCOMM CCR 43, 3 (2013).

[18] Freedman, M. J. Experiences with coralcdn: A five-year
operational view. In Proc. USENIX NSDI (2010).

[19] Ganjam, A., Siddiqui, F., Zhan, J., Liu, X., Stoica, I.,
Jiang, J., Sekar, V., and Zhang, H. C3: Internet-scale
control plane for video quality optimization. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15) (Oakland, CA, May 2015),
USENIX Association, pp. 131–144.

[20] Ghorbani, S., and Caesar, M. Walk the line: consistent
network updates with bandwidth guarantees. In Proc.
HotSDN (2012), ACM, pp. 67–72.

[21] Gurobi. Gurobi optimization. http://www.gurobi.com/.
[22] Han, D., Andersen, D., Kaminsky, M., Papagiannaki,

D., and Seshan, S. Hulu in the neighborhood. In Proc.
COMSNETS (Jan. 2011), pp. 1 –10.

[23] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M.,
Gill, V., Nanduri, M., and Wattenhofer, R. Achieving
high utilization with software-driven wan. In Proc. ACM
SIGCOMM (2013).

[24] Huang, C., Wang, A., Li, J., and Ross, K. W. Measuring
and evaluating large-scale cdns. In Proc. ACM IMC (2008).

[25] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski,
L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu,
M., et al. B4: Experience with a globally-deployed
software defined wan. In Proc. ACM SIGCOMM (2013).

[26] Jannotti, J., Gifford, D. K., Johnson, K. L.,
Kaashoek, M. F., et al. Overcast: reliable multicasting
with on overlay network. In Proc. 4th conference on
Symposium on Operating System Design & Implementation
(2000).

[27] Jiang, J., Sekar, V., and Zhang, H. Improving fairness,
efficiency, and stability in http-based adaptive video
streaming with festive. In Proc. ACM CoNEXT (2012).

[28] Katta, N. P., Rexford, J., and Walker, D. Incremental
consistent updates. In Proc. HotSDN (2013), ACM.

[29] Kontothanassis, L., Sitaraman, R., Wein, J., Hong, D.,

Kleinberg, R., Mancuso, B., Shaw, D., and Stodolsky,
D. A transport layer for live streaming in a content delivery
network. Proceedings of the IEEE 92, 9 (2004), 1408–1419.

[30] Kostić, D., Rodriguez, A., Albrecht, J., and Vahdat,
A. Bullet: High bandwidth data dissemination using an
overlay mesh. In ACM SIGOPS Operating Systems Review
(2003), vol. 37, ACM, pp. 282–297.

[31] Lamport, L. The part-time parliament. ACM Trans.
Comput. Syst. 16, 2 (May 1998), 133–169.

[32] Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V.,
Stoica, I., and Zhang, H. A case for a coordinated
internet video control plane. In Proc. ACM SIGCOMM
(2012), pp. 359–370.

[33] Liu, Y., Zhang, H., Gong, W., and Towsley, D. On the
interaction between overlay routing and underlay routing.
In INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies.
Proceedings IEEE (2005), vol. 4, IEEE, pp. 2543–2553.

[34] McGeer, R. A safe, efficient update protocol for openflow
networks. In Proc. HotSDN (2012), ACM, pp. 61–66.

[35] Nygren, E., Sitaraman, R. K., and Sun, J. The akamai
network: a platform for high-performance internet
applications. ACM SIGOPS Operating Systems Review 44,
3 (2010), 2–19.

[36] Prasad, R., Dovrolis, C., Murray, M., and Claffy, K.
Bandwidth estimation: metrics, measurement techniques,
and tools. Network, IEEE 17, 6 (2003), 27–35.

[37] Sandvine. Global internet phenomena report: 1h 2014.
https://www.sandvine.com/downloads/general/
global-internet-phenomena/2014/
1h-2014-global-internet-phenomena-report.pdf.

[38] Spangler, T. World cup sets new internet-video streaming
records for espn, univision, and akamai.
http://variety.com/2014/digital/news/
world-cup-sets-new-internet-video-streaming-record-1201221997/.

[39] Strauss, J., Katabi, D., and Kaashoek, F. A
measurement study of available bandwidth estimation tools.
In Proceedings of the 3rd ACM SIGCOMM Conference on
Internet Measurement (New York, NY, USA, 2003), IMC
’03, ACM, pp. 39–44.

[40] Su, A.-J., and Kuzmanovic, A. Thinning akamai. In Proc.
ACM IMC (2008).

[41] Team, T. How twitch fits in amazon’s strategy.
http://www.forbes.com/sites/greatspeculations/2014/08/
28/how-twitch-fits-in-amazons-strategy/.

[42] Wang, L., Park, K., Pang, R., Pai, V. S., and Peterson,
L. L. Reliability and security in the codeen content
distribution network. In Proc. USENIX ATC, General
Track (2004).

[43] Xu, D., Kulkarni, S. S., Rosenberg, C., and keung
Chai, H. A cdn-p2p hybrid architecture for cost-effective
streaming media distribution. Computer Networks 44
(2004), 353–382.

[44] YouTube. Live encoder settings, bitrates and resolutions.
https:
//support.google.com/youtube/answer/2853702?hl=en.

[45] Yu, M., Jiang, W., Li, H., and Stoica, I. Tradeoffs in
cdn designs for throughput oriented traffic. In Proc. ACM
CoNEXT (2012), ACM, pp. 145–156.

