Practical, Real-time Centralized Control for CDN-based Live Video Delivery

Matt Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srini Seshan, Hui Zhang

Live Video is Becoming Wildly Popular

Commercial sports streams

User-generated streams

Live Video is Becoming Wildly Popular

- Commercial sports streams
 - Single World Cup stream = 40% global Internet traffic
- User-generated streams (e.g., Twitch)
 - Users watch 150b min of live video per month
 - Amazon buys Twitch for ~\$1Billion

Our Contributions

 We design a video delivery network (VDN) to efficiently manage quality and cost, with high responsiveness

Outline

CDN Live Video Delivery Background

Legend

Requests:

Video 1
Video 2

Responses:

Video 1
Video 2

CDN Live Video Delivery Background

Link Cost

CDN Live Video Delivery Background

Problems with CDNs Today

Service Quality

Simulation using Conviva traces, modeling user-generated content

Delivery Cost

(per request)

cdn 2.0x

OPTIMAL 1.0x

Simulation using Conviva traces, modeling large sports events

Problems with CDNs Today

Service Quality

Delivery Cost

2.0x

OPTIMAL 1.0x

QUANTITATIVE

Not Fine-Grained

Videos aggregated into large groups

Slow DNS Updates

Can't push updates

DNS entries get cached

QUALITATIVE

Goals

Service Quality

Delivery Cost

2.0x

OPTIMAL 1.0x

Fine-Grained Control

Per-video Control

Real-time Response

Sub-second response to failures and joins

Room for improvement, but Internet latency / loss

Goals

Service Quality

Fine-Grained Control

Per-video Contro

Centralization!

[Liu, Xi et. al. A Case for a Coordinated Video Control Plane. SIGCOMM 2012]

Sub-second response to failures and joins

Room for improvement, but Internet latency / loss

Outline

Needs global view to coordinate videos and network resources

Solving Centralized Optimization

MAXIMIZE

SERVICE QUALITY

MINIMIZE

DELIVERY COST

SUBJECT TO

DON'T EXCEED LINK CAPACITY
SENDER MUST HAVE RECEIVED VIDEO

Solving Centralized Optimization

SERVICE QUALITY

```
\max_{w_{s}} w_{s} \cdot \sum_{l \in L_{AS}, o \in O} \text{Priority}_{o} \cdot \text{Request}_{l,o} \cdot \text{Serves}_{l,o} \\ - w_{c} \cdot \sum_{l \in L, o \in O} \text{Cost}(l) \cdot \text{Bitrate}(o) \cdot \text{Serves}_{l,o}
```

DELIVERY COST

subject to:

 $\forall l \in L, o \in O : Serves_{l,o} \in \{0, 1\}$

DON'T EXCEED LINK CAPACITY

 $\forall l \in L$: $\sum_{o} \text{Bitrate}(o) \cdot \text{Serves}_{l,o} \leq \text{Capacity}(l)$

 $\forall l \in L, o \in O : \sum_{l' \in \text{InLinks}(l)} \text{Serves}_{l',o} \ge \text{Serves}_{l,o}$

SENDER MUST HAVE RECEIVED VIDEO

Flexibility of Centralized Optimization

Link Cost

Flexibility of Centralized Optimization

Link Cost

Link Capacity

Video Priority

Centralized Optimization

Service Quality

Simulation using Conviva traces, modeling user-generated content

Delivery Cost

(per request)

cdn 2.0x

OPTIMAL 1.0x

Simulation using Conviva traces, modeling large sports events

Centralized Optimization

Service Quality

Simulation using Conviva traces, modeling user-generated content

Delivery Cost

(per request)

cdn 2.0x

VDN 1.0x

Simulation using Conviva traces, modeling large sports events

Unfortunately... No Free Lunch

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Problems with Centralization

Outline

Legend

Data Requests:

----- Video 1

Responses:

Video 1

Alternate Approach: Distributed

Outline

Hybrid Control

Challenges of Hybrid Control

Forwarding loops

TRIVIAL

Always forward requests upwards

State transitions

PRIOR WORK

Versioning and "shadow FIBS"

 Avoid bad control loop interactions

CHALLENGING

Combining Approaches: Hybrid

Combining Approaches: Hybrid

Combining Approaches: Hybrid

Challenges of Hybrid Control

Forwarding loops

TRIVIAL

Always forward requests upwards

State transitions

PRIOR WORK

Versioning and "shadow FIBS"

 Avoid bad control loop interactions

CHALLENGING

Challenges of Hybrid Control

Avoid bad control loop interactions

CHALLENGING

- 1. Centralized decision has priority
- 2. Distributed uses residual after centralized
- 3. Distributed has no impact on current/future centralized decisions
- 4. Distributed's changes don't propagate

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Outline

Putting it all Together

Putting it all Together

Key Results

- Trace-driven eval centralized optimization
 - High quality & low delivery cost? 1.7x / 2x
 - Scalable / fine grain? 10K videos; 2K clusters
- End-to-end eval hybrid control
 - Responsive? 200ms
- More results in paper
 - Operator Control? Failures? Partitions?

Conclusion

 VDN presents a new approach for CDNbased live video delivery

Practical, Real-time Centralized Control for CDN-based Live Video Delivery

Matt Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srini Seshan, Hui Zhang

Backup slides...

Problems with Traffic Engineering

Problems with Traffic Engineering

Link Capacity

Distributed: Example of Sub-optimal

Legend

Data Requests:

----- Video 1

Responses:
Video 1

Link Capacity

Distributed: Example of Sub-optimal

Trace-Driven Eval

- 3 Traces
 - Avg Day: raw trace of music video provider
 - Large Event: synthesized basketball game
 - Heavy Tail: synthesized twitch/ustream like workload
- 4 Systems
 - Everything Everywhere: all vids to all servers
 - Overlay Multicast: globally optimal; no coordination
 - CDN: greedy distribution scheme w/ DNS
 - VDN: our system

Trace-Driven Eval

	EE	CDN	VDN
Avg. Bitrate (kbps)	588	2,725	2,716
Cost / Sat. Req. (norm.)	103	1.5	1
Clients at Reqs. BR (%)	18.73%	100%	99.83%

	EE	CDN	VDN
Avg. Bitrate (kbps)	685	1748	3366
Cost / Sat. Req. (norm.)	8.9	1.21	1
Clients at Reqs. BR (%)	22%	49%	77%

Table 1: Results for Average Day trace.

	EE	CDN	VDN
Avg. Bitrate (kbps)	0.08	2,725	2,725
Cost / Sat. Req. (norm.)	178K	2.2	1
Clients at Reqs. BR (%)	0%	100%	100%

Table 2: Results for Large Event trace.

Table 3: Results for Heavy-Tail trace.

Existing Solutions

- Traffic Engineering (SWAN, B4, ...)
 - Works on aggregates at coarse timescales
- Overlay Multicast (Overcast, Bullet, ...)
 - Not designed for coordinating across streams
- Modern CDNs
 - Previous work shows a centralized system could greatly improve user experience but would be difficult to design over Internet