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RDCN is a black box: 
Do not segregate flows between networks

[Liu, NSDI ’14]



2010: RDCNs speed up DC workloads

[Wang, SIGCOMM ’10]

Packet network 
Hybrid network (c-Through) 
Full bisection bandwidth network

Hybrid networks achieve 
higher performance on 
datacenter workloads



Advances in circuit switch technology have led to a 10x reduction in 
reconfiguration delay ⇒ today, circuits can reconfigure much more frequently

Better for datacenters: More flexibility to support dynamic workloads
Better for hosts: Less data must be available to saturate higher bandwidth NW

Today’s RDCNs reconfigure 10x as often
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Short-lived circuits pose a problem for TCP
16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s
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reality

what we expect

TCP cannot ramp up during short circuits

no circuit no circuitcircuit

180μs

achieved bandwidth (BW) = slope

8x BW

1x BW



What is the problem?
All TCP variants are designed to adapt to changing network conditions

• E.g., congestion, bottleneck links, RTT

But bandwidth fluctuations in modern RDCN are an order of magnitude         
more frequent (10x shorter circuit duration) and more substantial (10x 
higher bandwidth) than TCP is designed to handle
• RDCNs break the implicit assumption of relatively-stable network 

conditions

This requires an order-of-magnitude shift in how fast TCP reacts



This talk: Our 2-part solution
In-network: Use information about upcoming circuits to transparently “trick”  
TCP into ramping up more aggressively

• High utilization, at the cost of tail latency

At endhosts: New TCP variant, reTCP, that explicitly reacts to circuit state 
changes

• Mitigates tail latency penalty

The two techniques can be deployed separately, but work best together



Naïve idea: Enlarge switch buffers
Want we want: TCP’s congestion window (cwnd) to parallel the BW 
fluctuations
First attempt: Make cwnd large all the time   How? Use large ToR buffers
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Circuit Switch

Naïve idea: Enlarge switch buffers

Packet Switch

Sender ReceiverToR buffer ToR buffer

high BDP

low BDP



Naïve idea: Enlarge switch buffers

ToR buffer

Circuit Switch

Packet Switch

Sender Receiver

high BDP

low BDP

ToR buffer
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Larger ToR buffers 
increase utilization of 
the high-BDP circuit 
network



Circuit Switch

Naïve idea: Enlarge switch buffers

ToR buffer
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Large queues increase utilization…
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6tatic buffer size (Sackets)
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…but result in high latency
Median latency 99th percentile latency 
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16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s

How can we improve this latency?



Use large buffers only when circuit is up
Dynamic buffer resizing: Before a circuit begins, transparently enlarge ToR 
buffers
Full circuit utilization with a latency degradation only during ramp-up 
period
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Circuit Switch

Resize ToR buffers before circuit begins
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Configuring dynamic buffer resizing
How long in advance should ToR buffers resize (𝝉)? 

• Long enough for TCP to grow cwnd to the circuit BDP

How large should ToR buffers grow to? 

• circuit BDP = 80 Gb/s ⨉ 40 µs = 45 9000-byte packets

For our configuration, the ToR buffers must hold ~40 packets to achieve 
90% utilization, which requires 1800 µs of prebuffering

We resize ToR buffers between sizes of 16 and 50 packets



How long in advance to resize, 𝝉? 
no circuit circuit
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16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small buffers: 16 packets;   large buffers: 50 packets

too early: extra queuingtoo late: low util.util./latency trade-off
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16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small buffers: 16 packets;   large buffers: 50 packets
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Latency degradation during ramp-up
Median latency 99th percentile latency

We cannot use large queues for so long. 
Can we get the same high utilization with shorter prebuffering?

2.3x increase

16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small buffers: 16 packets;   large buffers: 50 packets



This talk: Our 2-part solution
In-network: Use information about upcoming circuits to transparently “trick”  
TCP into ramping up more aggressively

• High utilization, at the cost of tail latency

At endhosts: New TCP variant, reTCP, that explicitly reacts to circuit state 
changes

• Mitigates tail latency penalty

The two techniques can be deployed separately, but work best together
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reTCP: Rapidly grow cwnd before a circuit

1) Communicate circuit state to sender TCP
2) Sender TCP reacts by multiplicatively increasing/decreasing 
cwnd

              desired 
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              dynamic buffers 
              dynamic buffers + reTCP
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reTCP 
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Circuit Switch

reTCP: Explicit circuit state feedback
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Circuit Switch
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Single multiplicative increase/decrease

𝛼 depends on ratio of circuit BDP to ToR queue capacity:
• Circuit network BDP: 45 packets
• Small ToR queue capacity: 16 packets

We use 𝛼 = 2

More advanced forms of feedback are possible

On 0 → 1 transitions:
cwnd = cwnd ⨉ 𝛼

On 1 → 0 transitions:
cwnd = cwnd / 𝛼



Dynamic buffers + reTCP achieve high utilization
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16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small buffers: 16 packets;   large buffers: 50 packets



Short prebuffer time means low latency
Median latency 99th percentile latency
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With 150μs of prebuffering, dynamic buffers + reTCP achieve 
93% circuit utilization with an only 1.20x increase in tail latency

16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small buffers: 16 packets;   large buffers: 50 packets



Limitations and future work
Dynamic buffer resizing and reTCP are designed to be minimally invasive

• Higher performance may be possible by involving the end-host further

Our evaluation used a simple traffic pattern to isolate TCP’s behavior
• Important to consider complex workloads as well

Is TCP the right protocol for hybrid networks?



Summary: Adapting TCP for RDCNs
Bandwidth fluctuations in reconfigurable datacenter networks break TCP’s 
implicit assumption of relative network stability

Two techniques to ramp up TCP during short-lived circuits
• Dynamic buffer resizing: Adapt ToR queues to packet or circuit network
• reTCP: Ramp up aggressively to fill new queue capacity

Etalon emulator open source at: github.com/mukerjee/etalon

Christopher Canel  ~  ccanel@cmu.edu 

Thank you!



Packet Network
Packet Switch

…
Packet Switch

Circuit Switch

Click hybrid switch 
(physical host)

One more thing: Etalon emulator

Rack 1

Server 1

Server M

…

ToR switch

Rack N

Server 1

Server M

…

ToR switch

Emulated rack 1 
(physical host)

Container 1

Container M

…

Emulated rack N 
(physical host)

Container 1

Container M

…
…



Click hybrid switch 
(physical host)

One more thing: Etalon emulator
Use time dilation to emulate 
high-bandwidth links
• “slows down” rest of the 

machine
• libVT: Catches common 

syscalls

Flowgrind to generate traffic

Strobe schedule: Each rack pair 
gets a circuit for an equal share
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Summary: Adapting TCP for RDCNs
Bandwidth fluctuations in reconfigurable datacenter networks break TCP’s 
implicit assumption of relative network stability

Two techniques to ramp up TCP during short-lived circuits
• Dynamic buffer resizing: Adapt ToR queues to packet or circuit network
• reTCP: Ramp up aggressively to fill new queue capacity

Etalon emulator open source at: github.com/mukerjee/etalon

Christopher Canel  ~  ccanel@cmu.edu 

Thank you!
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Circuit uptime impacts FCT
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Buffer resizing benefits many TCP variants
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Higher latency percentiles perform similarly
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16 flows from rack 1 to rack 2;   packet network: 10 Gb/s;   circuit network: 80 Gb/s;   
small queues: 16 packets;   large queues: 50 packets


